Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Nanotechnology ; 35(30)2024 May 09.
Article in English | MEDLINE | ID: mdl-38604152

ABSTRACT

The pursuit of van der Waals (vdW) heterostructures with high Curie temperature and strong perpendicular magnetic anisotropy (PMA) is vital to the advancement of next generation spintronic devices. First-principles calculations are used to study the electronic structures and magnetic characteristics of GaN/VS2vdW heterostructure under biaxial strain and electrostatic doping. Our findings show that a ferromagnetic ground state with a remarkable Curie temperature (477 K), much above room temperature, exists in GaN/VS2vdW heterostructure and 100% spin polarization efficiency. Additionally, GaN/VS2vdW heterostructure still maintains PMA under biaxial strain, which is indispensable for high-density information storage. We further explore the electron, magnetic, and transport properties of VS2/GaN/VS2vdW sandwich heterostructure, where the magnetoresistivity can reach as high as 40%. Our research indicates that the heterostructure constructed by combining the ferromagnet VS2and the non-magnetic semiconductor GaN is a promising material for vdW spin valve devices at room temperature.

2.
Article in English | MEDLINE | ID: mdl-38470598

ABSTRACT

Cervical abnormal cell detection plays a crucial role in the early screening of cervical cancer. In recent years, some deep learning-based methods have been proposed. However, these methods rely heavily on large amounts of annotated images, which are time-consuming and laborintensive to acquire, thus limiting the detection performance. In this paper, we present a novel Semi-supervised Cervical Abnormal Cell detector (SCAC), which effectively utilizes the abundant unlabeled data. We utilize Transformer as the backbone of SCAC to capture long-range dependencies to mimic the diagnostic process of pathologists. In addition, in SCAC, we design a Unified Strong and Weak Augment strategy (USWA) that unifies two data augmentation pipelines, implementing consistent regularization in semisupervised learning and enhancing the diversity of the training data. We also develop a Global Attention Feature Pyramid Network (GAFPN), which utilizes the attention mechanism to better extract multi-scale features from cervical cytology images. Notably, we have created an unlabeled cervical cytology image dataset, which can be leveraged by semi-supervised learning to enhance detection accuracy. To the best of our knowledge, this is the first publicly available large unlabeled cervical cytology image dataset. By combining this dataset with two publicly available annotated datasets, we demonstrate that SCAC outperforms other existing methods, achieving state-of-theart performance. Additionally, comprehensive ablation studies are conducted to validate the effectiveness of USWA and GAFPN. These promising results highlight the capability of SCAC to achieve high diagnostic accuracy and extensive clinical applications. The code and dataset are publicly available at https://github.com/Lewisonez/cc_detection.

3.
Heliyon ; 10(6): e28279, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545172

ABSTRACT

Background: Breast cancer (BC) is the primary cause of cancer mortality. Herein, we aimed to establish and verify a prognostic model consisting of endoplasmic reticulum stress and apoptosis related genes (ERAGs) to predict patient survival. Methods: The Cancer Genome Atlas (TCGA) database was used to download gene expression and clinical data to identify the differentially expressed genes (DEGs). Using univariate Cox regression analysis and the Least Absolute Shrinkage and Selection Operator (LASSO)-penalized Cox proportional hazards regression analysis, the prognostic ERAGs were screened. The predictive performance was evaluated using Kaplan-Meier (KM) survival and receiver operating characteristic (ROC) curve analysis. Furthermore, a nomogram model incorporating clinical parameters and risk scores was constructed and subsequently evaluated using ROC and KM analysis. The correlation analysis, mutation analysis, functional enrichment analysis, and immune infiltration analysis were employed to investigate the specific mechanism of ERAGs. We also used Quantitative Real-Time PCR (RT-qPCR) to verify the differential expression of DE-ERAGs between the breast cancer cell line and mammary epithelial cell line. Results: We constructed a prognostic signature comprising 16 ERAGs. ROC, KM analysis and the nomogram model demonstrated high effectiveness in accurately predicting the overall survival (OS) of BRCA patients. The results of these analysis could provide reference for further mechanism exploration. Conclusion: We developed and assessed a novel molecular predictive model for breast cancer that focuses on endoplasmic reticulum stress and apoptosis in this study. It is a valuable complement to the existing prognostic prediction models for breast cancer.

4.
Cancer Med ; 13(4): e7055, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38457255

ABSTRACT

BACKGROUND: CD2-associated protein (CD2AP) is a podocyte-associated gene and its reduced expression is associated with the development of proteinuria and glomerulosclerosis. However, few studies have focused on the correlation between the expression and prognosis of CD2AP in renal clear cell carcinoma (ccRCC). Therefore, we aimed to assess the regulation of CD2AP expression and prognostic value in ccRCC. METHODS: Multiple databases were employed to examine the expression of CD2AP in ccRCC. RT-qPCR, Western Blot and immunohistochemistry were used to validate CD2AP expression in different cell lines and tissue samples. Kaplan-Meier analysis and ROC curve analysis were performed on the predictive prognostic performance of CD2AP. COX regression was used to construct CD2AP-related prognostic models. The TIMER and TISIDB databases were used to analyze the correlation of tumor-infiltrating immune cells with gene expression, mutations, somatic copy number variation, and immune molecules. Mass spectrometry was used to detect methylation status of the promoter CpG site of CD2AP in multiple cells. RESULTS: We found that CD2AP expression was downregulated in ccRCC and its lower expression level was correlation with worse patient prognosis, higher tumor stage and grade and distant metastasis through analysis of databases, ccRCC cell lines and clinical tissue samples. Moreover, database and mass spectrometry techniques identified and validated cg12968598 hypermethylation as one of the key reasons for the downregulation of CD2AP expression. CD2AP expression was also associated with macrophage and neutrophil infiltration. CONCLUSIONS: Taken together, our results suggest that CD2AP can be used as a diagnostic and prognostic biomarker in ccRCC patients and that DNA hypermethylation plays an important role in reducing CD2AP expression.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Renal Cell , Carcinoma , Cytoskeletal Proteins , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , DNA Copy Number Variations , Prognosis , Kidney Neoplasms/genetics , Biomarkers
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 150-156, 2024 Feb 10.
Article in Chinese | MEDLINE | ID: mdl-38311552

ABSTRACT

OBJECTIVE: To assess the prognostic value of methylation of interferon regulatory factor 6 (IRF6) gene promoter in patients diagnosed with Kidney renal clear cell carcinoma (KIRC). METHODS: The primary lesions of fifty KIRC patients who were diagnosed at the First Affiliated Hospital of Nanjing Medical University from January 2016 to January 2020 were collected. The expression of IRF6 protein was determined with an immunohistochemical method. The correlation between the level of IRF6 expression and survival and/or metastasis status was analyzed. The mRNA and protein levels of the IRF6 in KIRC and normal renal tissues were compared by using bioinformatic tools. The difference in the methylation rate of the IRF6 gene promoter between tumor and adjacent tissues was analyzed by searching the online databases. Statistical analysis was carried out for the methylation status of the IRF6 gene promoter region to select those negatively correlated with the overall survival (OS) among the patients. In vitro experiments were conducted with cell lines to verify the correlation between the status of promoter methylation and transcription level of the IRF6 gene. RESULTS: The mRNA and protein levels of the IRF6 gene in KIRC tissues were significantly lower than those of the normal controls, and this was more prominent in patients who had died or developed metastasis. The extent of IRF6 gene promoter methylation in the KIRC tissues was much higher compared with that of the adjacent normal renal tissues. There was a significant negative correlation between the methylation of the IRF6 gene promoter and mRNA level of the IRF6 (R = -0.52). The higher methylation degree in the IRF6 gene promoter regions cg12034118 and cg16030177, the shorter the OS and worse prognosis in the patients. Only twenty CpG sites in cg12034118 were confirmed to be highly methylated in KIRC cell lines. The transcription level of the IRF6 gene was upregulated in a time- and dose-dependent manner after the treatment with demethylation reagent 5-azadeoxycytidine. CONCLUSION: The methylation of IRF6 gene promoter in the renal tissues of KIRC patients is closely correlated with the OS. Cg12034118 may provide a promising biomarker for laboratory detection, and its high methylation rate has certain reference value for the prognosis.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Kidney Neoplasms/genetics , Carcinoma, Renal Cell/genetics , Prognosis , DNA Methylation , Interferon Regulatory Factors/genetics , Kidney/pathology , Promoter Regions, Genetic , RNA, Messenger/genetics
6.
Front Oncol ; 14: 1327319, 2024.
Article in English | MEDLINE | ID: mdl-38380368

ABSTRACT

Propose: This meta-analysis aimed to determine whether 3D-printed artificial vertebral bodies (AVBs) have superior clinical efficacy compared to conventional titanium mesh cages (TMCs) for spinal reconstruction after total en bloc spondylectomy (TES) for spinal tumors. Methods: Electronic databases, including PubMed, OVID, ScienceDirect, Embase, CINAHL, Web of Science, Cochrane Library, WANFANG, and CNKI, were searched to identify clinical trials investigating 3D-printed AVB versus conventional TMC from inception to August 2023. Data on the operation time, intraoperative blood loss, preoperative and postoperative visual analogue scale (VAS) scores, preoperative and postoperative Frankel classification of spinal cord injury, vertebral body subsidence, and early complications were collected from eligible studies for a meta-analysis. Data were analyzed using Review Manager 5.4 and Stata 14.0. Results: Nine studies assessing 374 patients were included. The results revealed significant differences between the 3D-printed AVB and conventional TMC groups with regard to operation time (P = 0.04), intraoperative blood loss (P = 0.004), postoperative VAS score (P = 0.02), vertebral body subsidence (P < 0.0001), and early complications (P = 0.02). Conversely, the remaining preoperative VAS score and Frankel classifications (pre-and postoperative) did not differ significantly between the groups. Conclusion: The 3D-printed AVB in spinal reconstruction after TES for spinal tumors has the advantages of a short operative time, little intraoperative blood loss, weak postoperative pain, low occurrence of vertebral body subsidence and early complications, and a significant curative effect. This could provide a strong basis for physicians to make clinical decisions. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023441521, identifier CRD42023441521.

7.
Eur J Med Res ; 29(1): 103, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326905

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) have been extensively investigated in the field of cancer, among which, lncRNA ladybird homeobox 2-antisense RNA 1 (LBX2-AS1) has been demonstrated to exert carcinogenic effects on a variety of malignancies. However, the biological functions of LBX2-AS1 in clear cell renal cell carcinoma (ccRCC) have not been explicitly elucidated. METHODS: Arraystar lncRNA chip and qRT-PCR verify the expression of LncRNA LBX2-AS1 in ccRCC. CCK-8 assay and cell cloning assay were used to assess the proliferative capacity of ccRCC cells. Migration abilities were quantified by scratch assay and transwell assay. Potential molecular signaling pathways were determined by high-throughput whole transcriptomics analysis. WB analysis was performed to validate the relationship between LBX2-AS1 and key molecules of mitophagy pathway. The effect of LBX2-AS1 on mitophagy was observed by laser confocal microscopy. Rescue experiments further validated the role of downstream gene FOXO3A in the LBX2-AS1 signaling pathway. Finally, the authentic effect of LBX2-AS1 was verified in vivo. RESULTS: LncRNA LBX2-AS1 was over expressed in ccRCC tissues and could enhance the proliferation and migration of ccRCC cells. Autophagic pathway was identified as a possible mechanism involved in the oncogenic effect of LBX2-AS1. Mitophagy levels were observed in LBX2-AS1 low-expressing cells through laser confocal microscopy. Knockdown of LBX2-AS1 significantly elevated mitophagy levels as observed using laser confocal microscopy and led to FOXOA3 decreasing in and BNIP3L and LC3 enrichment. Meanwhile, LBX2-AS1 knocking down dampened the proliferation of ccRCC cells in vivo.


Subject(s)
Carcinoma, Renal Cell , Homeodomain Proteins , Kidney Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , MicroRNAs , Mitophagy , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
8.
Nanotechnology ; 35(17)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38271740

ABSTRACT

Self-powered ultraviolet (UV) photodetectors (PDs) are critical for future energy-efficient optoelectronic systems due to their low energy consumption and high sensitivity. In this paper, the vertically alignedß-Ga2O3nanotube arrays (NTs) have been prepared on GaN/sapphire substrate by the thermal oxidation process combined with the dry etching technology, and applied in the UV photoelectrochemical photodetectors (PEC-PDs) for the first time. Based on the large specific surface area ofß-Ga2O3NTs on GaN/sapphire substrates and the solid/liquid heterojunction, the PEC-PDs exhibit excellent self-powered characteristics under 255 nm (UVA) and 365 nm (UVC) light illumination. Under 255 nm (365 nm) light illumination, the maximum responsivity of 49.9 mA W-1(32.04 mA W-1) and a high detectivity of 1.58 × 1011Jones (1.01 × 1011Jones) were achieved for theß-Ga2O3NTs photodetectors at 0 V bias. In addition, the device shows a fast rise/decay time of 8/4 ms (4/2 ms), which is superior to the level of the previously reported self-powered UV PEC-PDs. This high-performance PEC-PD has potential applications in next-generation low-energy UV detection systems.

10.
Quant Imaging Med Surg ; 13(8): 5242-5257, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37581055

ABSTRACT

Background: Recent advances in artificial intelligence and digital image processing have inspired the use of deep neural networks for segmentation tasks in multimodal medical imaging. Unlike natural images, multimodal medical images contain much richer information regarding different modal properties and therefore present more challenges for semantic segmentation. However, there is no report on systematic research that integrates multi-scaled and structured analysis of single-modal and multimodal medical images. Methods: We propose a deep neural network, named as Modality Preserving U-Net (MPU-Net), for modality-preserving analysis and segmentation of medical targets from multimodal medical images. The proposed MPU-Net consists of a modality preservation encoder (MPE) module that preserves the feature independency among the modalities and a modality fusion decoder (MFD) module that performs a multiscale feature fusion analysis for each modality in order to provide a rich feature representation for the final task. The effectiveness of such a single-modal preservation and multimodal fusion feature extraction approach is verified by multimodal segmentation experiments and an ablation study using brain tumor and prostate datasets from Medical Segmentation Decathlon (MSD). Results: The segmentation experiments demonstrated the superiority of MPU-Net over other methods in the segmentation tasks for multimodal medical images. In the brain tumor segmentation tasks, the Dice scores (DSCs) for the whole tumor (WT), the tumor core (TC) and the enhancing tumor (ET) regions were 89.42%, 86.92%, and 84.59%, respectively. In the meanwhile, the 95% Hausdorff distance (HD95) results were 3.530, 4.899 and 2.555, respectively. In the prostate segmentation tasks, the DSCs for the peripheral zone (PZ) and the transitional zone (TZ) of the prostate were 71.20% and 90.38%, respectively. In the meanwhile, the 95% HD95 results were 6.367 and 4.766, respectively. The ablation study showed that the combination of single-modal preservation and multimodal fusion methods improved the performance of multimodal medical image feature analysis. Conclusions: In the segmentation tasks using brain tumor and prostate datasets, the MPU-Net method has achieved the improved performance in comparison with the conventional methods, indicating its potential application for other segmentation tasks in multimodal medical images.

11.
Ecotoxicol Environ Saf ; 263: 115267, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37499384

ABSTRACT

Perfluorinated compounds (PFCs) are man-made chemicals used in the manufacture of many products with water and dirt repellent properties. Many diseases have been proved to be related to the exposure of PFCs, including breast fibroadenoma, hepatocellular carcinoma, breast cancer and leydig cell adenoma. However, whether the PFCs promote the progression of prostate cancer remains unclear. In this work, through comprehensive bioinformatics analysis, we discovered the correlation between the prostate cancer and five PFCs using Comparative Toxicogenomics Database (CTD), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In addition, further analysis showed that several PFCs-related genes demonstrated strong prognostic value for prostate cancer patients. The survival analysis and receiver operating characteristic (ROC) curves revealed that PFCs-related genes based prognostic model held great predictive value for the prognosis of prostate cancer, which could potentially serve as an independent risk factor in the future. In vitro experiments verified the promotive role of perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) in the growth of prostate cancer cells. This study provided novel insights into understanding the role of PFCs in prostate cancer and brought attention to the environmental association with cancer risks and progression.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Prostatic Neoplasms , Water Pollutants, Chemical , Male , Humans , Fluorocarbons/analysis , Caprylates/toxicity , Caprylates/analysis , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/genetics , Water/analysis , Water Pollutants, Chemical/analysis , Risk , Environmental Monitoring , Alkanesulfonic Acids/toxicity , Alkanesulfonic Acids/analysis
12.
Neurosci Bull ; 39(10): 1497-1511, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37291477

ABSTRACT

Chronic cerebral hypoperfusion leads to white matter injury (WMI), which subsequently causes neurodegeneration and even cognitive impairment. However, due to the lack of treatment specifically for WMI, novel recognized and effective therapeutic strategies are urgently needed. In this study, we found that honokiol and magnolol, two compounds derived from Magnolia officinalis, significantly facilitated the differentiation of primary oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes, with a more prominent effect of the former compound. Moreover, our results demonstrated that honokiol treatment improved myelin injury, induced mature oligodendrocyte protein expression, attenuated cognitive decline, promoted oligodendrocyte regeneration, and inhibited astrocytic activation in the bilateral carotid artery stenosis model. Mechanistically, honokiol increased the phosphorylation of serine/threonine kinase (Akt) and mammalian target of rapamycin (mTOR) by activating cannabinoid receptor 1 during OPC differentiation. Collectively, our study indicates that honokiol might serve as a potential treatment for WMI in chronic cerebral ischemia.


Subject(s)
Brain Ischemia , Magnolia , White Matter , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Oligodendroglia/metabolism
13.
World J Surg Oncol ; 21(1): 114, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36978172

ABSTRACT

BACKGROUND: In recent years, researchers have proposed a number of adjuvant methods for extended curettage of giant cell tumors of the bone. However, various schemes have significant differences in efficacy and safety. Therefore, this article will describe an empirical expanded curettage protocol, 'triple clear', in detail to show the effect of the efficient surgical protocol. METHOD: Patients with Campanacci grades II and III primary GCTB who were treated with either SR (n = 39) or TC (n = 41) were included. Various perioperative clinical indicators, including the therapy modality, operation time, Campanacci grade, and filling material were recorded and compared. The pain level was determined by the visual analog scale. Limb function was determined by the Musculoskeletal Tumour Society (MSTS) score. Follow-up time, recurrence rates, reoperation rates, and complication rates were also recorded and compared. RESULT: The operation time was 135.7 ± 38.4 min in the TC group and 174.2 ± 43.0 min in the SR group (P < 0.05). The recurrence rates were 7.3% in the TC group and 8.3% in the SR group (P = 0.37). The MSTS scores at three months after surgery were 19.8 ± 1.5 in the TC group and 18.8 ± 1.3 in the SR group. The MSTS scores at two years were 26.2 ± 1.2 in the TC group and 24.3 ± 1.4 in the SR group (P < 0.05). CONCLUSION: TC is recommended for patients with Campanacci grade II-III GCTB and for those with a pathological fracture or slight joint invasion. Bone grafts may be more suitable than bone cement in the long term.


Subject(s)
Bone Neoplasms , Fractures, Spontaneous , Giant Cell Tumor of Bone , Humans , Bone Neoplasms/pathology , Fractures, Spontaneous/etiology , Fractures, Spontaneous/surgery , Giant Cell Tumor of Bone/pathology , Neoplasm Recurrence, Local/surgery , Neoplasm Recurrence, Local/complications , Giant Cells/pathology , Retrospective Studies , Curettage , Treatment Outcome
14.
Brain Sci ; 13(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36979270

ABSTRACT

Retinal imaging being a potential biomarker for Alzheimer's disease is gradually attracting the attention of researchers. However, the association between retinal parameters and AD neuroimaging biomarkers, particularly structural changes, is still unclear. In this cross-sectional study, we recruited 25 cognitively impaired (CI) and 21 cognitively normal (CN) individuals. All subjects underwent retinal layer thickness and microvascular measurements with optical coherence tomography angiography (OCTA). Gray matter and white matter (WM) data such as T1-weighted magnetic resonance imaging and diffusion tensor imaging, respectively, were also collected. In addition, hippocampal subfield volumes and WM tract microstructural alterations were investigated as classical AD neuroimaging biomarkers. The microvascular and retinal features and their correlation with brain structural imaging markers were further analyzed. We observed a reduction in vessel density (VD) at the inferior outer (IO) sector (p = 0.049), atrophy in hippocampal subfield volumes, such as the subiculum (p = 0.012), presubiculum (p = 0.015), molecular_layer_HP (p = 0.033), GC-ML-DG (p = 0.043) and whole hippocampus (p = 0.033) in CI patients. Altered microstructural integrity of WM tracts in CI patients was also discovered in the cingulum hippocampal part (CgH). Importantly, we detected significant associations between retinal VD and gray matter volumes of the hippocampal subfield in CI patients. These findings suggested that the retinal microvascular measures acquired by OCTA may be markers for the early prediction of AD-related structural brain changes.

15.
Langenbecks Arch Surg ; 408(1): 123, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36934163

ABSTRACT

PURPOSE: To comprehensively investigate the optimal multimodal treatment of resectable esophagogastric junction (EGJ) cancer. METHODS: PubMed, Embase, Cochrane Library and Web of Science were searched until March 11, 2022. The outcomes were overall survival (OS), locoregional and distant recurrence, and R0 resection. Network plots, forest plots and league tables were drawn for each outcome. Rank probabilities for different treatments in each outcome were also depicted. RESULTS: A total of 23 studies with 18,319 EGJ participants were included. No significant differences in OS between any two of the 6 treatments. Perioperative chemoradiotherapy (pCRT) had the highest probability (36.03%) to be the optimal treatment as regards OS. Patients undergoing pCRT had a significantly lower incidence of locoregional recurrence than those undergoing adjuvant chemotherapy (aCT), neoadjuvant chemotherapy (nCT), perioperative chemotherapy (pCT), or surgery alone (S). Patients with pCRT had the greatest likelihood (68.86%) to have the lowest incidence of locoregional recurrence. Comparable impacts of the 6 treatments on the incidence of distant recurrence, and pCRT was most likely (46.65%) to be the optimal treatment with respect to distant recurrence. Neoadjuvant CRT (nCRT) was associated with a significantly increased incidence of R0 resection compared with nCT or S, and nCRT had the highest probability (97.68%) to be the best therapy regarding R0 resection. CONCLUSION: For patients with resectable EGJ cancer, pCRT may be the optimal multimodal treatment regarding survival and recurrence.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Humans , Esophageal Neoplasms/therapy , Network Meta-Analysis , Bayes Theorem , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/therapy , Combined Modality Therapy , Chemoradiotherapy/methods , Neoadjuvant Therapy/methods , Esophagogastric Junction/surgery
16.
CNS Neurosci Ther ; 29(8): 2267-2280, 2023 08.
Article in English | MEDLINE | ID: mdl-36942495

ABSTRACT

INTRODUCTION: Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) is effective in alleviating cognitive deficits in Alzheimer's disease (AD). However, the strategy for target determination and the mechanisms for cognitive improvement remain unclear. METHODS: One hundred and thirteen elderly subjects were recruited in this study, including both cross-sectional (n = 79) and longitudinal experiments (the rTMS group: n = 24; the sham group: n = 10). The cross-sectional experiment explored the precise intervention target based on the cortical-hippocampal network. The longitudinal experiment investigated the clinical efficacy of neuro-navigated rTMS treatment over a four-week period and explored its underlying neural mechanism using seed-based and network-based analysis. Finally, we applied connectome-based predictive modeling to predict the rTMS response using these functional features at baseline. RESULTS: RTMS at a targeted site of the left angular gyrus (MNI: -45, -67, 38) significantly induced cognitive improvement in memory and language function (p < 0.001). The improved cognition correlated with the default mode network (DMN) subsystems. Furthermore, the connectivity patterns of DMN subsystems (r = 0.52, p = 0.01) or large-scale networks (r = 0.85, p = 0.001) at baseline significantly predicted the Δ language cognition after the rTMS treatment. The connectivity patterns of DMN subsystems (r = 0.47, p = 0.019) or large-scale networks (r = 0.80, p = 0.001) at baseline could predict the Δ memory cognition after the rTMS treatment. CONCLUSION: These findings suggest that neuro-navigated rTMS targeting the left angular gyrus could improve cognitive function in AD patients. Importantly, dynamic regulation of the intra- and inter-DMN at baseline may represent a potential predictor for favorable rTMS treatment response in patients with cognitive impairment.


Subject(s)
Alzheimer Disease , Transcranial Magnetic Stimulation , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy , Alzheimer Disease/psychology , Cross-Sectional Studies , Parietal Lobe , Treatment Outcome , Magnetic Resonance Imaging
17.
Brain Sci ; 13(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36831883

ABSTRACT

Cortical visual system dysfunction is closely related to the progression of Alzheimer's Disease (AD), while retinal vascular structures play an important role in the integrity of the function of the visual network and are a potential biomarker of AD. This study explored the association between the cortical visual system and retinal vascular structures in AD-spectrum patients, and it established a screening tool to detect preclinical AD based on these parameters identified in a retinal examination. A total of 42 subjects were enrolled and were distributed into two groups: 22 patients with cognitive impairment and 20 healthy controls. All participants underwent neuropsychological tests, optical coherence tomography angiography and resting-state fMRI imaging. Seed-based functional connectivity analysis was used to construct the cortical visual network. The association of functional connectivity of the cortical visual system and retinal vascular structures was further explored in these subjects. This study found that the cognitive impairment group displayed prominently decreased functional connectivity of the cortical visual system mainly involving the right inferior temporal gyrus, left supramarginal gyrus and right postcentral gyrus. Meanwhile, we observed that retinal vascular structure characteristics deteriorated with the decline in functional connectivity in the cortical visual system. Our study provided novel insights into the aberrant cortical visual system in patients with cognitive impairment that strongly emphasized the critical role of retinal vascular structure characteristics, which could be used as potential biomarkers for diagnosing and monitoring the progression of AD.

18.
Chemosphere ; 319: 138056, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739991

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are biodegradable organic pollutants and pose potential risks to microorganisms exposed to the contamination, which are also affected by a variety of factors, such as temperature, in real environmental settings. A better understanding of the microbial community responses to PBDEs at different temperatures has practical significance for assessing ecological risks or possible degraders of these widely used flame retardants. In this study, soil microcosms spiked with or without 100 mg kg-1 4,4'-dibromodiphenyl ether (BDE-15) were established and incubated at four different temperatures (4 °C, 20 °C, 37 °C, and varying ambient temperature) for up to 180 days. Concentration and carbon isotope analyses were used to verify the transformation of BDE-15. Bacterial communities were monitored during the incubation to evaluate the community succession under the PBDE stress. The results showed the majority of added BDE-15 remained after the incubation period, with limited degradation occurred at all four temperatures. Temperature significantly shaped the richness, diversity, composition and co-occurrence network of soil bacterial community, while the impacts of PBDE on soil bacteria were temperature dependent. When incubated at 4 °C, BDE-15 substantially reduced the network complexity and changed the ratio of negative to positive interactions between taxa (nodes), highlighting the PBDE-associated risks at low temperature. At higher temperatures, BDE-15 had negligible influence on the community characteristics and network. Random forest model identified distinct taxa that might be related to PBDE degradation at different incubation temperatures. These findings demonstrate contrasting bacterial community effects of PBDE at different temperatures, thus attention should be paid to the ecological impacts of soil pollution under real environmental conditions.


Subject(s)
Flame Retardants , Halogenated Diphenyl Ethers , Halogenated Diphenyl Ethers/analysis , Temperature , Soil , Bacteria/metabolism , Flame Retardants/analysis
19.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(11): 1407-1412, 2022 Nov 15.
Article in Chinese | MEDLINE | ID: mdl-36382460

ABSTRACT

Objective: To investigate the effects of percutaneous cement discoplasty (PCD) and percutaneous cement interbody fusion (PCIF) on spinal stability by in vitro biomechanical tests. Methods: Biomechanical test was divided into intact (INT) group, percutaneous lumbar discectomy (PLD) group, PCD group, and PCIF group. Six specimens of L 4, 5 (including vertebral bodies and intervertebral discs) from fresh male cadavers were taken to prepare PLD, PCD, and PCIF specimens, respectively. Before treatment and after the above treatments, the MTS multi-degree-of-freedom simulation test system was used to conduct the biomechanical test. The intervertebral height of the specimen was measured before and after the axial loading of 300 N, and the difference was calculated. The range of motion (ROM) and stiffness of the spine in flexion, extension, left/right bending, and left/right rotation under a torque of 7.5 Nm were calculated. Results: After axial loading, the change of intervertebral height in PLD group was more significant than that in other three groups ( P<0.05). Compared with INT group, the ROM in all directions significantly increased and the stiffness significantly decreased in PLD group ( P<0.05). Compared with INT group, the ROM of flexion, extension, and left/right rotation in PCD group significantly increased and the stiffness significantly decreased ( P<0.05); compared with PLD group, the ROM of flexion, extension, and left/right bending in PCD group significantly decreased and the stiffness significantly increased ( P<0.05). Compared with INT group, ROM of left/right bending in PCIF group significantly decreased and stiffness significantly increased ( P<0.05); compared with PLD group, the ROM in all directions significantly decreased and the stiffness significantly increased ( P<0.05); compared with PCD group, the ROM of flexion, left/right bending, and left/right rotation significantly decreased and stiffness significantly increased ( P<0.05). Conclusion: Both PCD and PCIF can provide good biomechanical stability. The former mainly affects the stiffness in flexion, extension, and bending, while the latter is more restrictive on lumbar ROM in all directions, especially in bending and rotation.


Subject(s)
Spinal Fusion , Male , Humans , Lumbar Vertebrae/surgery , Biomechanical Phenomena , Range of Motion, Articular , Diskectomy , Cadaver
20.
Front Aging Neurosci ; 14: 934071, 2022.
Article in English | MEDLINE | ID: mdl-36204559

ABSTRACT

Aims: This research aimed to explore alterations in the local gyrification index (GI) and resting-state functional connectivity (RSFC) in type 2 diabetes mellitus (T2DM) patients with mild cognitive impairment (MCI). Methods: In this study, 126 T2DM patients with MCI (T2DM-MCI), 154 T2DM patients with normal cognition (T2DM-NC), and 167 healthy controls (HC) were recruited. All subjects underwent a battery of neuropsychological tests. A multimodal approach combining surface-based morphometry (SBM) and seed-based RSFC was used to determine the structural and functional alterations in patients with T2DM-MCI. The relationships among the GI, RSFC, cognitive ability, and clinical variables were characterized. Results: Compared with the T2DM-NC group and HC group, T2DM-MCI patients showed significantly reduced GI in the bilateral insular cortex. Decreased RSFC was found between the left insula and right precuneus, and the right superior frontal gyrus (SFG). The altered GI was correlated with T2DM duration, global cognition, and episodic memory. The mediation effects of RSFC on the association between GI and cognition were not statistically significant. Conclusion: Our results suggest that GI may serve as a novel neuroimaging biomarker to predict T2DM-related MCI and help us to improve the understanding of the neuropathological effects of T2DM-related MCI.

SELECTION OF CITATIONS
SEARCH DETAIL
...